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SEPARATION OF A FLOW FROM THE CORNER PO1 NT OF A BODY* 

E.V. BCGDANOVA and O.S. RYZHOV 

Changes in the velocity field which occur when the external pressure 
gradient is gradually increased, the gradient being determined by the 
theory of jet flows of an ideal incompressible fluid, are studied. The 
possibility of an essentially non-linear viscous sublayer occuring in the 
preseparation region, which adheres to the rigid surface, is noted. A 
solution of the boundary value problem is given for a boundary layer 
interacting freely with the potential flow under the conditions when the 
initial pressure gradient changes its sign from negative to positive. In 
this case a stagnation point appears in the incoming flow. 

1. The preseparation region. We shall assume that the surface of the streamlined 
body has a corner, at which the flow becomes separated. We choose the radius of curvature 
of the surface, the velocity of potential flow of fluid at the corner point, and its density, 
as the three basic units of measurement. Assuming that a change to dimensionless variables 
has been made, we shall direct the s axis of the curvilinear orthogonal system of coordinates 
along the generatrix of the body , and the II axis along its normal. Let u' and v' be the 
components of the perturbed velocity vectors and p'the excess pressure in the outer potential 
*Prikl.Matem.Mekhan.,51,3,425-433,1987 
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region of the flow. The theory of jet flows of an ideal incompressible fluid shows that near 
the point at which the free streamline leaves the body the complex velocity has a singularity. 
In the linear approximation the Bernoulli integral implies that u' = -_p', and from this we 
have /l/ 

uI' = p' + iv' = ib,j,.z’l~ + . ., z = s f in (1.1) 

The constant b,, is determined by the global structure of the velocity field, and its 
sign can be negative, as well as positive. When argz ---f 0, the excess pressure p'-to. If on 
the other hand argz-+n, then 

p' --f -b,, (-s)‘/” + . . . (I.3 

When b*,,, of (1.1) changes its sign, so does the derivative dp’lds characterizing the 
drop or rise in pressure along the surface s<O. As regards the extent of the region of 
preseparation flow, it is determined by the normalization s = 1 b, lh-3zI where h is the 
in,itial value of the reduced surface friction /2/. Further we shall assume that the relation 
A =: I bll, IA-‘<1 expressed in terms of the Reynolds number R > 1 results from at least one 
of the following inequalities: I bv. I < 1 or l<h. 

The Prandtl boundary layer with the singularity (1.2) in the pressure distribution on its 
outer edge and R-1, was studied in /3/ in connection with the problem of the flow past a 
flat plate positioned at a positive angle of attack a* = b,,z-RR-‘ha to the incoming flow. The 
analysis for the region of preseparation flow at the surface of a smooth body was carried out 
in /4/ and was subsequently adopted in /5, 6/. The structure of the classical boundary layer 
in another limiting case when b,;*<O, and \b,,J-1, was discussed in /7/. Such a structure 
is characteristic for the separation of the flow from the corner point of the body surface. 

The approach proposed in /2/ gives a unified treatment to various modes of flow depending 
on the sign of bl:, and the similarity parameter K = R-‘2 101, /-*A:’ on different bodies. 

In the linear solution constructed in /Z-6/ which describes the preseparation region, the 
correction terms are of the order of unity when (-z~)- A5. This characteristic size is 
associated with the zone in which essentially non-linear effects may appear in the motion of 
the fluid, provided that 1 ba,: j does not become very small and the order of K does not exceed 
unity. We stretch, intheviscous boundary sublayer adjacent to the body, both coordinates 

s em / b,._ I”P.i , n = lx-’ A 1 b,/, I’h-+j (I.?)) 

and normalize, in an appropriate manner, the stream function and the pressure 

The Prandtl equation in the new variables states that 

In order to formulate the initial conditions for it, we introduce the selfsimilar variable 
5 = (_J)-';,y and determine the function f($J as the solution of the ordinary differential 
equation 

(l.(i) 

satisfying the boundary conditions 

j",J = djC'i:,J@ = 0 when E = 0 (1.7) 

that there are no terms that increase exponentially as 5 -2 XJ. From the results and the demand 
of /Z-6/ we obtain 

~--~~'+(-~)'~~f('~~)(E)i.,., p--,-signb,,,(--E)'/z-t... (1.X) 

as .i -> -x, E = const. 
The conditions at the outer edge of the viscous boundary sublayer adjacent to the wall 

are obtained by matching the stream function q and excess pressure p normalized with the help 
of (1.41, with the corresponding quantities for the main bulk of the boundary layer. Using 
the asymptotic forms ~('JJ for large values of the argument, we have 

&&_Y~- -$$#sig,~b,$;; j n(.~)y -/- . . . as I/'---w 

The choice of the displacement thickness A remains arbitrary, except that /Z-6/ 

(1.9) 
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A --+ 3~,~ sign bt,$ (--.I?)‘/* + . . : as r-t---30 (1.10) 

and the numerical value of the constant B*,J, = 2'A3'hr("/,) is established by solving problem 
(1.61, (1.7). 

As regards the pressure gradient in Eq.(l.S) , in order to determine it we must match the 
solution for the main bulk of the boundary layer with the solution controlling the potential 
flow of the fluid where the transverse n = 1 b*l, j’h-@y, and the longitudinal coordinate have 
the same scale. When analysing the potential flow, it is convenient to use, instead of the 
stream function, the components a' = ) bx:, ) %-%& and v' = 1 bri, \ %%, of the perturbed velocity 
directly. We see from the matching /2&f that the usual condition of non-penetration must 
hold 

v, = -KdAidz when ye = 0, z < 0, 

which contains the similarly parameter K mentioned above. 

(1.11) 

One might get the impression, that inclusion in it of the surface friction, which depends 
on the Reynolds number and possesses the property that h-m as N-W, is artificial. We 
find, however, that in the boundary layer which becomes detached near the leading edge from 
the sharp plate protruding from the blunt body, the surface friction is governed, according 
to /8, 9/, by the estimate h- H""b~~ (b,,*>U). The friction increases without limit together with 
the Reynolds number if the quantities b,!% are of higher order than R-'/I.* 

2. The non-linear viscous sublayer. When 6,,< 0 and K<1, we obtain by 
virtue of (1.11) the problem of flow past the initial body for the complex velocity, since 
u,(z, O)= 0. The excess pressure is then established from its limit value at infinity. Thus 
we have 

jj = -sign bt,, (-z)‘/* + . . . = (-~)‘/a + , . . (2.1) 
while the displacement thickness A (2) in the boundary condition (1.9) remains unknown, and 
is found when integrating Eq.cl.5). The integration starts, as I-t--cz, from the initial 
distribution for the stream function given by the first equation of (1.8). 

A solution of the problem formulated should be constructed using numerical methods. 
However, from the theory of the Prandtl boundary layer we know /lo/ that the influence of 
initial data is appreciable at distances several times greater than the displacement thickness. 
Therefore, to a first approximation the initial data need not be taken into account at all 
when the question concerns the asymptotic properties of the solution in the limit as 5 - 
o-. This simple concept forms the basis of /7/, and following this paper we shall separate 
the region of flow in question, with the longitudinal and transverse coordinates normalized 
according to (1.3), into two sublayers, and this will lead to a four-layer structure of the 
velocity field. 

In order to satisfy the condition that the fluid adheres to the surface of the body, we 
must include in the balance of forces the influence of viscous tangential stresses, and this 
results in the selfsimilar form 

+ = 2% (- ")% f (q), q = 2-‘/a (_ .q-“/*# (2.2) 

oftheasymptotic solution in the lowest of the four sublayers. Substituting (2.2) into (l-5), 
we obtain a non-linear differential equation for the function f, represented in the limit, as 
q-f 00, by the following sequence: 

f = j. lz,Tp-m)l~ (2.3) 

a, = a2 = a6 = 0, a* = 9 (5&I, a6 = af (5&J--' 

where the remaining coefficients a, and a, are arbitrary. Numerical integration of this equation 
starts at the point n =0 where f = dfidq = 0. Comparing the data thus obtained with (2.3) 
we find /?/ that a,= 1.950718, and a,= --1,577568. 

Let us write, using (2.3) as the starting point, the asymptotic expansion for the stream 
function for fixed (-$)<I and n-+m, namely 

&-2~'"e*@" + 2%e,(_ @V*$/* + 2’fra* (- Z)‘h pa t_ * . . (2.4) 

The form of expression (2.4) implies the existence of a sublayer whose properties are 
very similar to those of the basic bulk of the boundary layer /2-6/. Indeed, here we have 

~=~~(~)-t_(-2)"1~gl(~)+(-z)'~z;clp(~)+... (2.5) 

The functions $, and i&?, satisfy the following linear differential equations: 

(2.6) 
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with the coefficients expressed in terms of the arbitrary function To. Recalling (l-9), we 
have the condition in the limit 

The matching of (2.4) and (2.5) at the inner boundary of the sublayer in question leads 
to the requirement that 

$, _. 2-'1'3~&'1'3 + . . . as JJ - 0 12.8) 
Integrating the first equation of (2.6) we obtain $= C,d$,ldJ. We see from (2.7) that 

the complete matching of this solution with the solution specifying the structure of the basic 
bulk of the boundary layer in (1.9), is prevented by the lack of a term proportional to 5%. 

But we can establish the asymptotic expression for the function 

A = C, (- zy’n + . . ,, C, = 2’/2 3~2, (5aJ’ (2.9) 

even when we confine ourselves to terms linear in 5 (the constant is determined by matching 
with (2.4)), 

It remains to integrate the second equation of (2.61, whose right-hand side is generated 
by taking into account the excess pressure (2.1). By virtue of (2.6) its general SdutiOn 

has the following limit as lj * 0: 

$_+ 2-'lJ:i-15a,C,$l; .+ 2'/~32(&~,,)-1$/~ + . , . (2.10) 

Matching (2.10) to (2.4) we obtain the relations c,=O and U~=9(5a,,)-', the latter 
being obtained, of course, in agreement with (2.3). From this we have, at the outer boundary 
J-+00 of the sublayer in question, 

and this enables us to sharpen the asymptotic expression for the function A. Finally we have 

A = C, (-a)‘~~ + iI-(- Z)‘G + . . . 

Thus we see that the essentially non-linear nature of the motion of the fluid in the 
region with normalized (1.3) longitudinal and transverse coordinate, leads to a more rapid 
reduction compared with (1.10) in the displacement thickness A near the point where the free 
streamline leaves the corner point of the body. As a result, the derivative dAid2, which 
determines the angle of inclination of the velocity vector, becomes smaller. 

The reduced surface friction corresponding to the solution (2.2) is h,=2-"~li(-Z)-'/~daf 

(0)ldq2, and this yields the estimate S- 1 bl/,l%,-” which repeats, when K- 1 and A, - A, 
the first normalization of (1.3) based on completely different concepts. However, when 
K<1, the local value h, of the surface friction increases in the non-linear region, 
gradually becoming many times greater than its initial value h. The preliminary increase in 
the surface friction ensures the subsequent appearance of free interaction between the boundary 
layer and outer potential flow. 

Let us estimate the reduced coordinate z at which the above process starts. In the 
potential flow the excess pressure pe= 1 bt,,l,-4h4p’ is of the same order as both components u, 
and v,of the perturbed velocity. Since the pressure does :not vary across all three sublayers 
into which the boundary layer is decomposed,itfollows that p-p,- v,. We shall calculate 
the last of these quantities using relation (1.11) and substituting it into the right-hand 
side of A from formula (2.9). The expression j?- K(-?)-‘~~ obtained in this manner should 
be of the same order as the excess pressure which, by virtue of (2.1), is simply (_ X)'l?. 

This yields 5 N R-‘1s 1 b,,, I-a4MP. The final estimate 

---s- R-V. ( (I,,, (-‘% (2.11) 

does not contain h < R’ilaI bs,P, and this is in full agreement with the assertion that the 
asymptotic properties of the.flow as .E+O are independent of its state at the input b + - 
iyI. In order to describe the process of free interaction itself we can use, in this case, 

the well-known solution given in /ll, 12/. 

3. Free interaction mode. NOW let K- 1, fromwhichit follows that 1 bil,/ - R-M% 
Under this condition the free interaction of the boundary layer with the outer potential flow 
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begins at once, without preliminary formation of a non-linear viscous sublayer with the known 
excess-pressuredistribution (2.1). The extent of the region of free interaction is governed, 
as can be confirmed, by the estimate (2.11), althoughinlthe mode in question the initial 
surface friction h _ R'll8I bl,,ri*. With regard to the sign of bt,, we will allow the possibility 
that it will change from negative to positive when it is gradually increased. The passage of 
bl;, through zero means that the boundary layer in front of the break in the contour of the 
body begins to be affected by the adverse pressure gradient causing a drop in the surface 
friction. However, when considering bt,> 0, we shall limit ourselves to the case when the 
separation occurs at the corner point. The resulting non-trivial boundary value problem will 
be analysed in detail below. 

bet us superimpose the s axis of the initial curvilinear system of coordinates behind the 
point of separation, with the streamline detached from this point. We introduce the complex 
variable 2, = 2 + iy,. Relation (1.1) shows that in the potential flow the excess pressure 
pe-+ 0 and Iz, j+oo and argz,=O. Let the detached boundary layer separate the moving fluid 
from the fluid at rest. Repeating the arguments of /ll/ we can show that in the this case 
P_=O , within the approximation used, in the whole region Z> 0 of the boundary layer. As 
usual, we shall determine the analytic function ZU~ of the complex variable z,, using w, = 
ps -t il.,.. Recalling (1.111, we formulate the Hilbert problem for this function in the upper 
half-plane with the following data: 

Im w, = - KdAidr when ~(0; ReEu,=O when _z>O (3.2) 

on the axis y, = 0. In addition, the function w, must satisfy, by virtue of (1.81, the limit 
relation w,+ i sign bgp when j z,j-+m, irrespective of the fact that according to (1.10) the 
limiting value Int use -+ I/, sign b,,,K&, (-,i)-“* as 5--t--m. 

For functions with such an order of increase at infinity the problem should have zero 
index, ensuring the uniqueness of the solution , provided that we had /we I- jz, Im with I/,( 
m < 81 as 12, i-to. This behaviour of w, is quite admissible , since it implies the smoothing 
of thei! singularity which is generated in the initial flow of ideal fluid due to neglect of the 
tangential viscous stresses. It is, however, impossible to satisfy automaticallythe conditions 
at zero and infinity, since the asymptotic form w, + i sign bl,,ze”‘* as 12, I-+00 does not 
correspond to the asymptotic forms of Rew, and Im we appearing in the boundary conditions 
(3.1). 

We shall begin with 
ities. Standard methods 

estimates fixing just the order of increase of w, at both singular- 
of functions of a complex variable yield in this case 

dE (3.2) 

However, the coefficient of z'f* in the asymptotic expansion of u%? following from (3.2)‘ 
generally speaking, different at infinity, from isign bt,. In order to make it equal to a given 
quantity, we must impose the requirement that 

on the required displacement thickness A. As a result, the excess pressure in the region 
z<O of the boundary layer will be expressed as 

Now we have formulated completely the boundary value problem for the Prandtl Eq.(1.5), 
but condition (3.3) is additional. It will have to be confirmed that it is satisfied. If on 
the other hand (3.3) is not satisfied, then the use of (3.4) to represent the excess pressure 
would imply that the singularity in the region of free interaction is no longer smoothed. 

Instead of starting with (3.2), we can start directly from (3.4) as was done in /12/ for 
flows with a favourable pressure gradient satisfying Ib,,J -1. Then the special behaviour of 
the unique solution 1w.l when 1~~) -0 would be determined by the inequalities -% < n G VP. 
Relation (3.3) guarantees that it belongs to the class of functions in question, and the 
relation, in this case, plays the part of the condition of solvability of the Hilbert problem 
formulated in the corresponding manner. 

Since the Prandtl equation is non-linear, it follows that the boundary value problem for 
the region of free interaction can only be solved using numerical methods. We can check 
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whether the additional condition (3.3) holds, only with an accuracy guaranteed by the finite 
difference scheme chosen. Therefore, it becomes very important to simplify the problem so 
that an exhaustive analysis can be carried out. The possibilities in this connection are 
related to the passage of the coefficient Dq, through zero. 

Let us assume that, since I bl,2 / is small, the similarity parameter K reaches fairly 
large values compared with unity. Let us write bz,,= kb>,,“,where k is a positive number and, in 
all transformations carried out above of the independent variables as well as of the functions 
sought, let us replace I bl, I by 1 bl,,” I. Eq.(1.5) retains its form, relations (1.8)-(1.10) 
will have k sign bl Io instead of sign bl;, , and a modified similarity parameter K" = fi-',~ 1 by.” /mtJ”’ 
will appear on the right-hand side of (1.11). Let us choose the constant k so that Ii"=l. 
This yields the normalization I ba,,” I = K-“-T;-, with the obvious corollary k = I b,;, / R’:+“I~ = 
K-‘,h , i.e. k- 1 when K- 1, but k<l when l<K. It is important that the continuation 
--s- R-‘4-‘~~ of the region of free interaction is obtained, unlike (2.11), in a fixed form 
depending on the Reynolds number and surface friction in the initial boundary layer. 

This thickness of the viscous boundary layer is estimated in terms of its order of 
magnitude, as n - R-‘;a >^,-“I~. 

Thus we have formulated a boundary value problem in which the small parameter k appears 
in relations (1.8)-(1.10) and not in the condition of interaction (1.11). The problem can be 
linearized, provided that we put 

,p '/,g' + k$ (.L, y), r, ~1 kj? (I), A - 1cA’ (,“) 

and its final formulation for the perturbed stream function v in suitably chosen variables 
will be identical with that given in /3/ in connection with the determination of the anti- 
symmetric part of the pressure acting on the plate at the angle of attack a* to the incoming 
flow. Since the reduced angle a =: c~*R’:‘~d-“~~, we have the corresponding k sign bx I’. Using the 
results given in /3/, we can write for 2<0 at once 

(X.5) 

We have, Ln accordance with (3.1), dp'/d.z = 0 when s> 0. Assuming in (3.5) that the 
coordinate S-+0--, we obtain the final value of the derivative djT/dz, which corresponds 
to the power index ,,I = 1 in the estimate which determines the behaviour of 1 w, 1 as Is, I--f 
0. The change in the displacement thickness along the body contour Z<O is given by the 
relation 

and the value of dZA’ld9 which follows from it in the limit as 7+0 is finite, and this 
yields the same index m = 1. 

Thus, according to the solution of the linearized problem, the singularity of the form 
(- S)'/> in the pressure distribution, which is generated in the initial flow of ideal fluid 
by neglecting the tangential viscous stresses, is smoothed out in the zone of free interaction. 
During the passage through the point z=O the pressure remains continuous,anditsderivative 
has a first-order discontinuity. As regards the integral Eq.(3.3) in which K has been replaced 
by K”=i, its direct confirmation based on the. formulas (3.5) and (3.6) is difficult, but 
arguments can be presented showing that it must hold. 

Indeed, let us assume the opposite , namely that condition (3.3) does not hold. Then by 
virtue of (3.4) the excess pressure j--(-Zy'* and z-O--, and this leads to the conclusion 
that the pressure gradient increases without limit on approaching the corner point of the body. 
This obviously contradicts the earlier conclusion that the pressure gradient has a finite 
value near this point, and hence the relation (3.3) holds. 

4. The stagnation point. The asymptotic expansions which follow from (3.5) and 
(3.6) as Z-J- M, show that 

(4.1) 

A’ =: Bx,, sign b:, (- z)‘/* + . . . 
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The first of these formulas shows that the initial representation (1.1) of the analytic 
function w' as 1 z I+= 0, must contain terms ibt,,+nz’J*+n with not only the positive integral, but 
also with negative values of n. They are the eigenfunctions of the boundary value problem of 
a flow of ideal incompressible fluid past a break in the contour of the body. The second 
formula of (4.1) yields, in fact, the same value of the displacement thickness A, as that 
prescribed using (1.10); it controls the term proportional to (-~)-'/a in the expression for 
excess pressure. The term cannot be obtained without taking into account the tangential 
viscous stresses. 

Returning to the initial variables, we have 

p’ == _ b,,, (- +” - R-V&-‘I, ‘OS n/8 ~ (- @-‘la + R-‘M-“ln $ * (-q-‘/6 + . . .] 

and this yields b-a,, N kR-‘M.-‘18. Since the longitudinal component of the velocity vector 
u=l $u', and by virtue of the Bernoulli integral we have u'= -p’, it therefore follows 
from (4.2) that in the outer potential flow with constant b*i,>O a stagnation point must be 
situated at the body surface at a distance 

fromthebreak /3/. When k((1 it vanishes under the influence of the viscosity. If on the 
other hand bt,,<O, then a stagnation point will not form at the surface of the body. 

Finally, let us turn to the Brillouin-Villat condition characterizing the limiting case 
bll, =O. The resulting boundary value problem is very similar to that studied in /13/ in 
connection with the separation of the flow from a step formed by the segments of two straight 
lines. Let us write, for simplicity, hi 1. According to the solution constructed above 
all the redundant quantities vanish in the region of free interaction. The next term with 
positive n in the singular expansion (1.1) will be ib.,,z”* where b,l, N 1, and the excess 
pressure at the surface of the body will be established in this case as p’ = pa,,’ - (-S)31% 
The extent of the region of free interaction is SW R-‘/a, therefore we have here p,,'w R”lla, 
which is much greater than R-‘14, which determines the order of the selfinduced pressure. 
Thus, in the limiting case the non-linear structure including three fluid sublayers with 
different properties will not develop near thebreakin the contour of the body, 

When b,,,= 0, the main contribution towards the excess pressure at distances 8 - R-"ia 

is given, according to /13/, by the characteristic solution i b_t,,z-‘:2, but unlike (4.2) the 
constant b.+, N R-‘/q. Denoting this contribution by p_,,,‘, we have pLIIZ< R-“Jla, which is also 
insufficient for the appearance of a non-linear three-layer flow. 

Apart from the region of free interaction we have, in the immediate neighbourhood of the 
break point, a zone in which the motion of a viscous fluid obeys the complete system of 
Navier-Stokes equations. The scales of this zone in the longitudinal and transverse directions 
are both estimated to be equal to R3jd, and the characteristic pressure induced by the 
displacement layer must be of the order of R-'f*. Continuing the excess pressure generated by 
the terms i b&/z and ib_~,#lz from the expansion (1.1) to distances as short as desired from 
the corner-point yields, respectively, p’s,, N R-‘/a and p& N R-‘/t. From this we conclude that 
the term ibal,z’i2 generates small corrections to the solution only in the zone of the complete 
Navier-Stokes equations, while taking into account the term i b_~,+r leads to the need to 
consider also the region of free interaction in which the equations of the boundary layer can 
be linearized. 
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ANOMALOUS HYDRODYN~IC FLUCTUATIONS DURING THE DEVELOPMENT 
OF THERMAL CONVECTION* 

O.A. GRECHANNYI and V.V. TOKARCHUK 

The spectral functions of the fluctuations of the hydrodynamic variables 
in an inhomogeneously heated liquid in the region of Rayleigh numbers 
close to the threshold of convective stability have been calculated using 
the equations of the correlation theory of thermal fluctuations in non- 
equilibrium statistical systems. It is shown that anomalous fluctuations, 
which form the structure of the flow in the regions of supercritical values 
of the Rayleigh number are of an essentially non-equilibrium nature and 
are completely accounted for by the long wavelength part of the correlation 
functions. The results of the calculations are used to analyse the effect 
of large-scale fluctuations on the Rayleigh scattering of radiation. It is 
is shown that, in a region where thermal convection develops, they are 
responsible for a phenomenon which is analogous to the critical opalescence 
of light during equilibrium phase transitions of the second kind. 

The investigation of the dependence of the spectral functions of 
thermal hydrodynamic fluctuations on the degree of non-equilibrium in 
statistical systems is of great significance in the development of optical 
methods for the noise diagnostics of inhomogeneous flows of liquids and 
gases. Systems which are far removed from thermodynamic equilibrium and, 
in particular, the fluctuation mechanisms of processes involving the self- 
organization of flow structures when there is loss of stability are of 
special interest. A large number of papers (/l-4/, for example) have 
been concerned with the study of the anomalous hydrodynamic fluctuations 
which develop close to the thermal convection threshold in a liquid which 
is heated from below. However, the results obtained in the majority of 
these papers are contradictory as for example, in /l/ and /2/. This is 
explained by the previously discussed /5-?/ incompleteness of the theories 
of non-equilibrium hydrodynamic fluctuation theories which were employed. 
In this paper an analysis of the anomalous fluctuations during the 
development of thermal convection is carried out using the solution of 
the equations of the theory in /6/ which enables one to evaluate the 
results which have previously been obtained from common positions- 

1. Initial equations and forunrlation of the problem. Let US consider a one- 
component inhomogeneous continuous medium which is described by a system of Navier-Stokes- 
Fourier equations for the mean values of the density n, the hydrodynamic velocity u and the 
thermal energy density e= %I, kBT, where krr is Boltsmann's constant and T is the mean value of 
the temperature. We shall write this system of equations in the symbolic form: 

rl 
- 0, ir! 

;- .I,[@; r] m: 0. vr-0. 1, 2,:3, r, (1.1) 
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